Fluorescence lifetime imaging by using time-gated data acquisition.
نویسندگان
چکیده
The use of the time gating technique for lifetime reconstruction in the Fourier domain is a novel technique. Time gating provides sufficient data points in the time domain for reliable application of the Fourier transform, which is essential for the time deconvolution of the system of the integral equations employed in the reconstruction. The Fourier domain telegraph equation is employed to model the light transport, which allows a sufficiently broad interval of frequencies to be covered. Reconstructed images contain enough information needed for recovering the lifetime distribution in a sample for any given frequency within the megahertz-gigahertz band. The use of this technique is essential for recovering time-dependent information in fluorescence imaging. This technique was applied in reconstruction of the lifetime distribution of four tubes filled with Rhodamine 6G embedded inside a highly scattering slab. Relatively accurate fluorescence lifetime reconstruction demonstrates the effectiveness and the potential of the proposed technique.
منابع مشابه
Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier
High-speed (video-rate) fluorescence lifetime imaging (FLIM) is reported using two different time-domain approaches based on gated optical image intensifier technology. The first approach utilizes a rapidly switchable variable delay generator with sequential image acquisition, while the second employs a novel segmented gated optical imager to acquire lifetime maps in a single shot. Lifetimes ar...
متن کاملPhasor-based single-molecule fluorescence lifetime imaging using a wide-field photon-counting detector.
Fluorescence lifetime imaging (FLIM) is a powerful approach to studying the immediate environment of molecules. For example, it is used in biology to study changes in the chemical environment, or to study binding processes, aggregation, and conformational changes by measuring Förster resonance energy transfer (FRET) between donor and acceptor fluorophores. FLIM can be acquired by time-domain me...
متن کاملHighly efficient detection in fluorescence tomography of quantum dots using time-gated acquisition and ultrafast pulsed laser.
Quantum dots (QDs) are widely used in fluorescence tomography due to its unique advantages. Despite the very high quantum efficiency of the QDs, low fluorescent signal and autofluorescence are the most fundamental limitations in optical data acquisition. These limitations are particularly detrimental to image reconstruction for animal imaging, e.g., free-space in vivo fluorescence tomography. I...
متن کاملTiming and Operating Mode Design for Time-Gated Fluorescence Lifetime Imaging Microscopy
Steady-state fluorence imaging and time-resolved fluorescence imaging are two important areas in fluorescence imaging research. Fluorescence lifetime imaging is an absolute measurement method which is independent of excitation laser intensity, fluorophore concentration, and photobleaching compared to fluorescence intensity imaging techniques. Time-gated fluorescence lifetime imaging microscopy ...
متن کاملEnhancing precision in time-domain fluorescence lifetime imaging.
In biological applications of fluorescence lifetime imaging, low signals from samples can be a challenge, causing poor lifetime precision. We demonstrate how optimal signal gating (a method applied to the temporal dimension of a lifetime image) and novel total variation denoising models (a method applied to the spatial dimension of a lifetime image) can be used in time-domain fluorescence lifet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 46 30 شماره
صفحات -
تاریخ انتشار 2007